Real-Time Estimation of Satellite-Derived PM2.5 Based on a Semi-Physical Geographically Weighted Regression Model
نویسندگان
چکیده
The real-time estimation of ambient particulate matter with diameter no greater than 2.5 μm (PM2.5) is currently quite limited in China. A semi-physical geographically weighted regression (GWR) model was adopted to estimate PM2.5 mass concentrations at national scale using the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth product fused by the Dark Target (DT) and Deep Blue (DB) algorithms, combined with meteorological parameters. The fitting results could explain over 80% of the variability in the corresponding PM2.5 mass concentrations, and the estimation tends to overestimate when measurement is low and tends to underestimate when measurement is high. Based on World Health Organization standards, results indicate that most regions in China suffered severe PM2.5 pollution during winter. Seasonal average mass concentrations of PM2.5 predicted by the model indicate that residential regions, namely Jing-Jin-Ji Region and Central China, were faced with challenge from fine particles. Moreover, estimation deviation caused primarily by the spatially uneven distribution of monitoring sites and the changes of elevation in a relatively small region has been discussed. In summary, real-time PM2.5 was estimated effectively by the satellite-based semi-physical GWR model, and the results could provide reasonable references for assessing health impacts and offer guidance on air quality management in China.
منابع مشابه
Modeling of the Relationships Between Spatio-Temporal Changes of Traffic Volume and Particulate Matter-2.5 Pollutant Concentration Based on Geographically Weighted Regression (GWR) and Inverse Distance Weighting (IDW) Model: A Case Study in Tehran M
Background and Aim: High concentrations of particulate matter-25 (PM2.5) have been the cause of the unhealthiest days in Tehran, Iran in recent years. This study was conducted with the aim of the spatio-temporal analysis of traffic volume and its relationship with PM2.5 pollutant concentrations in Tehran metropolis, Tehran during 2015-2018, using the Geographic Information System (GIS). Materi...
متن کاملGround Level PM2.5 Estimates over China Using Satellite-Based Geographically Weighted Regression (GWR) Models Are Improved by Including NO2 and Enhanced Vegetation Index (EVI)
Highly accurate data on the spatial distribution of ambient fine particulate matter (<2.5 μm: PM2.5) is currently quite limited in China. By introducing NO₂ and Enhanced Vegetation Index (EVI) into the Geographically Weighted Regression (GWR) model, a newly developed GWR model combined with a fused Aerosol Optical Depth (AOD) product and meteorological parameters could explain approximately 87%...
متن کاملA Geographically and Temporally Weighted Regression Model for Ground-Level PM2.5 Estimation from Satellite-Derived 500 m Resolution AOD
Regional haze episodes have occurred frequently in eastern China over the past decades. As a critical indicator to evaluate air quality, the mass concentration of ambient fine particulate matters smaller than 2.5 μm in aerodynamic diameter (PM2.5) is involved in many studies. To overcome the limitations of ground measurements on PM2.5 concentration, which is featured in disperse representation ...
متن کاملSemi-Physical Estimates of National-Scale PM10 Concentrations in China Using a Satellite-Based Geographically Weighted Regression Model
The estimation of ambient particulate matter with diameter less than 10 μm (PM10) at high spatial resolution is currently quite limited in China. In order to make the distribution of PM10 more accessible to relevant departments and scientific research institutions, a semi-physical geographically weighted regression (GWR) model was established in this study to estimate nationwide mass concentrat...
متن کاملComparison of the Performance of Geographically Weighted Regression and Ordinary Least Squares for modeling of Sea surface temperature in Oman Sea
In Marine discussions, the study of sea surface temperature (SST) and study of its spatial relationships with other ocean parameters are of particular importance, in such a way that the accurate recognition of the SST relationships with other parameters allows the study of many ocean and atmospheric processes. Therefore, in this study, spatial relations modeling of SST with Surface Wind Speed (...
متن کامل